A High-Throughput Oxidative Stress Biosensor Based on Escherichia coli roGFP2 Cells Immobilized in a k-Carrageenan Matrix
نویسندگان
چکیده
Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
منابع مشابه
A Bacterial Biosensor for Oxidative Stress Using the Constitutively Expressed Redox-Sensitive Protein roGFP2
A highly specific, high throughput-amenable bacterial biosensor for chemically induced cellular oxidation was developed using constitutively expressed redox-sensitive green fluorescent protein roGFP2 in E. coli (E. coli-roGFP2). Disulfide formation between two key cysteine residues of roGFP2 was assessed using a double-wavelength ratiometric approach. This study demonstrates that only a few min...
متن کاملReal-Time Imaging of the Bacillithiol Redox Potential in the Human Pathogen Staphylococcus aureus Using a Genetically Encoded Bacilliredoxin-Fused Redox Biosensor
AIMS Bacillithiol (BSH) is utilized as a major thiol-redox buffer in the human pathogen Staphylococcus aureus. Under oxidative stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolation, which can be reversed by bacilliredoxins (Brx). In eukaryotes, glutaredoxin-fused roGFP2 biosensors have been applied for dynamic live imaging of the glutathione redox potential. Here, we h...
متن کاملAntibody-based immobilization of bioluminescent bacterial sensor cells.
Whole-cell luminescent bioreporter sensors based on immobilized recombinant Escherichia coli are described and evaluated. The sensors were prepared by glutaraldehyde-anchoring of nonspecific anti-E. coli antibodies on aminosylilated gold or silica glass surfaces with subsequent attachment of the probe bacteria. We demonstrate the generality of the concept by attachment of several E. coli strain...
متن کاملInvestigation of immunosensor modification with reduced Graphene Oxide with Au Nanoparticles on glassy carbon electrode in Label-free for Escherichia coli detection
Escherichia coli is an indicator in the quality control of pharmaceutical and other samples. Reduced graphene oxide (rGO) as a kind of carbon compositions was immobilized on glassy carbon electrode (GCE). Chronoamperometric and reduction methods were used for Au NPs decoration and it completed with polyclonal E. coli antibody and 0.5 W/V% Bovine Serum Albumin solution. Morphology and structure ...
متن کاملSingle Walled Carbon Nanotube-Based Junction Biosensor for Detection of Escherichia coli
Foodborne pathogen detection using biomolecules and nanomaterials may lead to platforms for rapid and simple electronic biosensing. Integration of single walled carbon nanotubes (SWCNTs) and immobilized antibodies into a disposable bio-nano combinatorial junction sensor was fabricated for detection of Escherichia coli K-12. Gold tungsten wires (50 µm diameter) coated with polyethylenimine (PEI)...
متن کامل